Twin belt slab casting is part of the continuous strip casting process technologies which account for around 30% of the world’s continuous casting output.
The basic objective of the process is to efficiently and to a high quality standard, rapidly cast molten metal into strip under seriously varied thermal gradients.
Category Archives: Manufacture
Shape Rolling
Shape rolling of steels is a process which requires a lot of heat and a lot of force. Reheating is carried out to around 1200°C and then the metal is continuously fed through rollers to draw the desired dimensions.
Popular shapes have good application in the construction business as I, H, and U shaped beams or girders can be produced for structural integrity
Vacuum Induction Melting
Vacuum melting, casting and re-melting equipment have been implemented in huge numbers over the recent years mainly with an intention to try and eradicate impurities from the process wherever possible.
Vacuum induction melting (VIM) has some specific advantages including, gas elimination, chemical composition control, process control and more.
Continue reading
Deep Drawing of Aluminum Alloys: Part Two
Deep drawing is one of the most intensively studied process areas due to its close relationship with the automotive industry with focus not only on visual appeal but also paramount safety concerns.
However the most important benefit of using aluminum materials in the forming of automotive body parts is the high weight loss factor associated with these materials.
Deep Drawing of Aluminum Alloys: Part One
Driven by the notoriously high demands of the automotive industry the quest to find more efficient, cheaper and better quality methods to produce materials is ever present.
Deep drawing, the process of turning sheet metal into hollow parts, is a critical production process and from the measurement of certain material properties it can be seen that aluminum has favorable performance when compared to steels.
The Water-Atomizing Process: Part One
Water atomizing of metals is now a commercially important methodology to achieve fine particle distribution for a range of materials.
The general process is effective by impinging a falling stream of molten metal with jets of water which immediately solidify the metal into granules (>1mm) or powder (<1mm). Compared to less modern techniques like crushing and grinding water atomization presents a cost effective and efficient approach to producing metallic powders.
Continue reading
Semi-Solid Thixoforming: Part One
Thixotropy is characterized by a solid-like behavior at rest and a liquid-like flow when submitted to shear and advantage can be taken of this phenomena through two semi-solid processing routes; thixo-forming and rheo-casting.
The main advantages of thixo-forming are that it negates the need for handling liquid metal and the process can then by highly automated.
Continue reading
Deep Drawing of Magnesium Alloys
Compared to other materials such as aluminum, magnesium possesses a range of advantageous physical characteristics such as a much lighter weight, specific solidity and rigidity characteristics and good mechanical properties.
For use in design much information about processing remains unknown but deep draw testing has already shown that that an increase in elongation and a decrease in stress can be observed at elevated temperatures.
Hydro-forming Process of Steel: Part Two
The Tube Hydroforming (THF) process is a relatively new manufacturing technology, which has been used in the past decade. THF offers potential alternatives in the use of lightweight materials and hence can have a great impact in saving energy in the automotive industry.
THF offers several advantages as compared to conventional manufacturing via stamping and welding.
Hydro-Forming Process of Steel: Part One
One of these new processes is tube hydroforming and although the development of this process for the automotive industries is relative new, many process variables have been studied, including; friction, material properties, pressures and the displacement path during the process.
Hydroforming uses fluid pressure in place of the punch in a conventional tool set to form the part into the desired shape of the die.