Creep Life Prediction

Creep life prediction is of paramount importance in selecting the right material for certain engineering applications and in the most extreme cases can prevent component failure leading to catastrophic effects.
Such implications mean that there has been an important development to assist in predicting creep life for example, the Strain-Acceleration-Parameter (SAP), which connects creep curves directly to the minimum creep rate.

Continue reading

Production of Creep-Resistant Steels for Turbines: Part Two

Vacuum Arc Remelting (VAR) is a secondary melting process used in the production of metal ingots with a precise chemical and mechanical homogeneity for highly demanding applications. Ingots derived from the VAR process are typically utilized in the production of the critical components of jet engines and industrial gas turbines, as well as for military applications and heavy industry.

Continue reading

Production of Creep-Resistant Steels for Turbines: Part One

Due to its specific applications (elevated temperatures, lasting constant loads), steel for turbine blades is very complex as to its technology and quality, requiring a higher level of purity and continuous production process management.
In order to reduce the residual elements as low as possible to make high purity steels, the double slag process was improved by using electric arc furnaces and subsequently ladle refining furnaces.

Continue reading

Creep and Stress Rupture Properties

Creep is defined as the time-dependent strain that occurs under load at elevated temperature and operates in most applications of heat-resistant high-alloy castings at normal service temperatures. In time, creep may lead to excessive deformation and even fracture at stresses considerably below those determined in room temperature and elevated-temperature short-term tension tests.
Continue reading